The backbone of ZEN document review is a new method for calculating recall in legal search projects using random sampling that we call *ei-Recall. *This stands for *elusion interval* *recall. *We offer this to everyone in the e-discovery community in the hope that it will replace the *hodgepodge* of methods currently used, most of which are statistically invalid. Our goal is to standardize a new *best practice* for calculating recall. This lengthy essay will describe the formula in detail, and explain why we think it is the new *gold standard*. Then we will provide a series of examples as to how *ei-Recall* works.

We have received feedback on these ideas and experiments from the top two scientists in the world with special expertise in this area, William Webber and Gordon Cormack. Our thanks and gratitude to them both, especially to William, who must have reviewed and responded to a dozen earlier drafts of this blog. He not only corrected initial logic flaws, and there were many, but also typos. As usual any errors remaining are purely our own, and these are our opinions, not theirs.

*ei-Recall* is preferable to all other commonly used methods of recall calculation, including Herb Roitbalt’s *eRecall,* for two reasons. First, *ei-Recall* includes interval based range values, and, unlike *eRecall*, and other simplistic ratio methods, is *not based* on point projections. Second, and this is critical, *ei-Recall* is only calculated at the end of a project, and depends on a known, verified count of *True Positives* in a production. It is thus unlike *eRecall*, and all other recall calculation methods that depend on an estimated value for the number of *True Positives* found.

Yes, this does limit the application of *ei-Recall* to projects in which great care is taken to bring the *precision* of the production to near 100%, including second reviews, and many quality control cross-checks. But this is anyway part of the workflow in many *Continuous Active Learning* (CAL) predictive coding projects today. At least it is in mine, where we take great pains to meet the client’s concern to maintain the confidentiality of their data. *See*: Step 8 of the EDBP (*Electronic Discovery Best Practices*), which I call *Protections* and is the step* *after first pass review by CAR (computer assisted review, multimodal predictive coding).

**Advanced Summary of ei-Recall**

We begin with a high level summary of this method for my more advanced readers. Do not be concerned if this seems fractured and obtuse at first. It will come into clear 3-D focus later as we describe the process in multiple ways and conclude with examples.

*ei-Recall* calculates recall range with two fractions. The numerator of both fractions is the actual number of *True Positives* found in the course of the review project and verified as relevant. The denominator of both fractions is based on a random sample of the documents *presumed* irrelevant that will not be produced, the *Negatives.* The percentage of *False Negatives* found in the sample allows for a calculation of a *binomial* range of the total number of *False Negatives* in the *Negative *set. The denominator of the *low end* recall range fraction is the *high end* number of the projected range of *False Negatives, *plus the number of *True Positives*. The denominator of the *high end* recall range fraction is the *low end* number of the projected range of *False Negatives, *plus the number of *True Positives*.

Here is the full algebraic explanation of *ei-Recall, *starting with the definitions for the symbols in the formula.

**Rl**stands for the low end of recall range.**Rh**stands for high end of recall range**TP**is the verified total number of relevant documents*found*in the course of the review project.**FNl**is the low end of the*False Negatives*projection range based on the low end of the exact binomial confidence interval.**FNh**is the high end of the*False Negatives*projection range based on the high end of the exact binomial confidence interval.

Formula for the *low* end of the recall range:

**Rl = TP / (TP+FNh)**.

Formula for the *high* end of the recall range:

**Rh = TP / (TP+FNl)**.

This formula essentially adds the extreme probability ranges to the standard formula for recall, which is: R = TP / (TP+FN).

**Quest for the Holy Grail of Recall Calculations**

I have spent the last few months in intense efforts to bring this project to conclusion. I have also spent more time writing and rewriting this blog than any I have ever written in my eight plus years of blogging. I wanted to find the best possible recall calculation method for e-discovery work. I convinced myself that I needed to find a new method in order to take my work as a legal search and review lawyer to the next level. I was not satisfied with my old ways and methods of quality control of large legal search projects. I was not comfortable with my prevalence based recall calculations. I was not satisfied with anyone else’s recall methods either. I had heard the message of Gordon Cormack and Maura Grossman clearly stated right here in their guest blog of September 7, 2014: Talking Turkey. In their conclusion they stated:

We hope that our studies so far—and our approach, as embodied in our TAR Evaluation Toolkit—will inspire others, as we have been inspired, to seek even more effective and more efficient approaches to TAR, and better methods to validate those approaches through scientific inquiry.

I had already been inspired to find better methods of predictive coding, and have uncovered an efficient approach with my multimodal CAL method. But I was still not satisfied with my recall validation approach, I wanted to find a better method to scientifically validate my review work.

Like almost everyone else in legal search, including Cormack and Grossman, I had earlier rejected the so called *Direct Method* of recall calculation. It is unworkable and very costly, especially in low prevalence collections where it requires sample sizes in the tens of thousands of documents.* See Eg. *Grossman & Cormack*,** Comments on ‘The Implications of Rule 26(g) on the Use of Technology-Assisted Review,’ *Federal Courts Law Review, Vol. 7, Issue 1 (2014) at 306-307 (“The

*Direct Method*is statistically sound, but is quite burdensome, especially when richness is low.”)

Like Grossman and Cormack, I did not much like any of the other sampling alternatives either. Their excellent *Comments* articles discusses and rejects Roitblat’s *eRecall*, and two other methods by Karl Schieneman and Thomas C. Gricks III, which Grossman and and Cormack call the *Basic Ratio Method* and *Global Method*. *Supra* at 307-308.

I was on a quest of sorts for the *Holy Grail* of recall calculations. I knew there had to be a better way. I wanted a method that used sampling with interval ranges as a tool to assure the quality of a legal search project. I wanted a method that created as accurate an estimate as possible. I also wanted a method that relied on simple fraction calculations and did not depend on advanced math to narrow the binomial ranges, such as William Webber’s favorite recall equation: the *Beta-binomial Half* formula, shown below.

Webber, W., *Approximate Recall Confidence Intervals, *ACM Transactions on Information Systems, Vol. V, No. N, Article A, Equation 18, at pg. A:13 (October 2012).

Before settling on my much simpler algebraic formula I experimented with many other methods to calculate recall ranges. Most were much more complex and included two or more samples, not just one. I wanted to try to include a sample that I usually take at the beginning of a project to get a rough idea of prevalence with interval ranges. These were the examples shown by my article, *In Legal Search Exact Recall Can Never Be Known*, and described in the section, *Calculating Recall from Prevalence*. I wanted to include the first sample, and prevalence based recall calculations based on that first sample, with a second sample of excluded documents taken at the end of the project. Then I wanted to kind of average them somehow, including the confidence interval ranges. Good idea, but bad science. It does not work, statistically or mathematically, especially in low prevalence.

I found a number of other methods, which, at first, looked like the Holy Grail. But I was wrong. They were made of lead, not gold. Some of the one’s that I dreamed up were made of *fools gold!* A couple of the most promising methods I tried and rejected used multiple samples of various stratas. That is called stratified random sampling as compared to simple sampling.

My questionable, but inspired research method for this very time consuming development work consisted of background reading, aimless pondering, sleepless nights, intuition, *trial and error* (appropriate I suppose for a former *trial* lawyer), and many consults with the top experts in the field (another old trial lawyer trick). I ran though many other alternative formulas. I did the math in several standard review project scenarios, only to see the flaws of these other methods in certain circumstances, primarily low prevalence.

Every experiment I tried with added complexity, and added effort of multiple samples, proved to be fruitless. Indeed, most of this work was an exercise in frustration. (It turns out that noted search expert Bill Dimm is right. There is *no free lunch* in recall.) My experiments, and especially the expert input I received from Webber and Cormack, all showed that the extra complexities were not worth the extra effort, at least not for purposes of recall estimation. Instead, my work confirmed that the best way to channel additional efforts that might be appropriate in larger cases is simply to increase the sample size. This, and my use of confirmed *True Positives*, are the only sure-fire methods to improve the reliability of recall range estimates. They are the best ways to lower the size of the interval spread that all probability estimates must include.

**Finding the New Gold Standard**

*ei-Recall *meets all of my goals for recall calculation. It maintains mathematical and statistical integrity by including probable ranges in the estimate. The size of the range depends on the size of the sample. It is simple and easy to use, and easy to understand. It can thus be completely transparent and easy to disclose. It is also relatively inexpensive and you control the costs by controlling the sample size (although I would not recommend a sample size of less than 1,500 in any legal search project of significant size and value).

Finally, by using verified *True Positives*, and basing the recall range calculation on only one random sample, one of the *null set*, instead of two samples, the chance factor inherent to all random sampling is reduced. I described these chance factors in detail in *In Legal Search Exact Recall Can Never Be Known*, in the section on *Outliers and Luck of Random Draws. *The possibility of outlier events is still possible using

*ei-Recall*, but is minimized by limiting the sample to the

*null set*and only estimating a projected range of

*False Positives*. While it is true that the

*prevalence*based recall calculations described in

*In Legal Search Exact Recall Can Never Be Known*, also only use one random sample, that is a sample of the entire document collection to estimate a projected range of relevant documents,

*True Positives*. The number of relevant documents found will (or at least should be in any half-way decent search) be a far larger number than the number of

*False Negatives*. For that reason alone the variability range (interval spread) of the straight elusion recall method should typically be smaller and more reliable.

**Focus Your Sampling Efforts on Finding Errors of Omission**

The number of documents *presumed* irrelevant, the *Negatives*, or *null set*, will always be smaller than the total document collection, unless of course you found no relevant documents at all! This means you will always be sampling a smaller dataset when doing an *elusion* sample, than when doing a *prevalence* sample of the entire collection. Therefore, if you are trying to find your mistakes, the *False Negatives*, look for them where they might lie, in the smaller *Negative* set, the *null set*. Do not look for them in the larger complete collection, which includes the documents you are going to produce, the *Positive* set. Your errors of *omission,* which is what you are trying to measure, could not possibly be there. So why include that set of documents in the random sample? That is why I reject the idea of taking a sample at the end of the *entire collection*, including the *Positives*.

The *Positives*, the documents to be produced, have already been verified enough under my two-pass system. They have been touched multiple times by machines and humans. It is highly unlikely there will be *False Positives*. Even if there are, the requesting party will not complain about that. Their concern should be on completeness, or recall, especially if any precision errors are minor.

There is no reason to include the *Positives* in a final recall search in any project with verified *True Positives.* That just unnecessarily increases the total population size and thereby increases the possibility of an inaccurate sample. Estimates made from a sample of 1,500 documents of a collection of 150,000 documents will always be more accurate, more reliable, than estimates made from a sample of 1,500 documents of a collection of 1,500,000. The only exception is when there is an even distribution of target documents making up half of the total collection – 50% prevalence.

Sample size does not scale perfectly, only roughly, and the lower the prevalence, the more inaccurate it becomes. That is why sampling is not a *miracle tool* in legal search, and recall measures are range estimates, not certainties. *In Legal Search Exact Recall Can Never Be Known.* Recall measure when done right, as it is in *ei-Recall*, is a powerful quality assurance tool, to be sure, but it is not the *end-all* of quality control measures. It should be part of a larger tool kit that includes several other quality measures and techniques. The other quality control methods should be employed throughout the review, not just at the end like *ei-Recall.* Maura Grossman and Gordon Cormack agree with me on this.* Comments on ‘The Implications of Rule 26(g) on the Use of Technology-Assisted Review,’ supra* at

*285*. They recommend that validation:

consider all available evidence concerning the effectiveness of the end-to-end review process, including prior scientific evaluation of the TAR method, its proper application by qualified individuals, and proportionate post hoc sampling for confirmation purposes.

**Ambiguity in the Scope of the Null Set**

There is an open-question in my proposal as to exactly how you define the *Negatives*, the presumed irrelevant documents that you sample. This may be varied somewhat depending on the circumstances of the review project. In my definition above I said the *Negatives* were the documents *presumed* to be irrelevant that will not be produced. That was intentionally somewhat ambiguous. I will later state with less ambiguity that *Negatives* are the documents not produced (or logged for privilege). Still, I think this application should be varied sometimes according to the circumstances.

In some circumstances you could improve the reliability of an elusion search by excluding from the *null set* all documents coded irrelevant by an attorney, either with or without actual review. The improvement would arise from shrinking the size of the number of documents to be sampled. This would allow you to focus your sample on the documents most likely to have an error.

For example, you could have 50,000 documents out of 900,000 not produced, that have actually been read or skimmed by an attorney, and coded irrelevant. You could have yet another 150,000 that have not been actually been read or skimmed by an attorney, but have been *bulked coded* irrelevant by an attorney. This would not be uncommon in some projects. So even though you are not producing 900,000 documents, you may have manually coded 200,000 of those, and only 700,000 have been presumed irrelevant on the basis of computer search. Typically in predictive coding driven search that would be because their ranking at the end of the CAL review was too low to warrant further consideration. In a simplistic keyword search they would be documents omitted from attorney review because they did not contain a keyword.

In other circumstances you might want to include the documents attorneys reviewed and coded as irrelevant, for instance, where you were not sure of the accuracy of their coding for one reason or another. Even then you might want to exclude other sets of documents for other grounds. For instance, in predictive coding projects you may want to exclude some bottom strata of the rankings of probable relevance. For example, you could exclude the bottom 25%, or maybe the bottom 10%, or bottom 2%, where it is highly unlikely that any error has been made in predicting irrelevance of those documents.

In the data visualization diagram I explained in *Visualizing Data in a Predictive Coding Project – Part Two* (shown right) you could exclude some bottom portion of the ranked documents shown in blue. You could, for instance, limit the *Negatives* searched to those few documents in the 25% to 50% probable relevance range. Of course, whenever you limit the null set, you have to be careful to adjust the projections accordingly. Thus, if you find 1% *False Negatives* in a sample of a presumably enriched sub-collection of 10,000 out of 100,000 total *Negatives*, you cannot just project 1% of 100,000 and assume there are a total of 1,000 *False Negatives* (plus or minus of course). You have to project the 1% from the sample of the size of the sub-collection sampled, and so it would be 1% of 10,000, or 100 *False Negatives*, not 1,000, again subject to the confidence interval range, a range that varies according to your sample size.

Remember, the idea is to focus your random search to find mistakes on the group of documents that are most likely to have mistakes. There are many possibilities.

In still other scenarios you might want to *enlarge* the *Negatives* to include documents that were never included in the review project at all. For instance, if you collected emails from ten custodians, but eliminated three as unlikely to have relevant information as per Step 6 of the EDBP (culling), and only reviewed the email of seven custodians, then you might want to include select documents from the three excluded custodians in the final elusion test.

There are many other variations and issues pertaining to the scope of the *Negatives* set searched in *ei-Recall*. There are too many to discuss in this already long article. I just want to point out in this introduction that the makeup and content of the *Negatives* sampled at the end of the project is not necessarily cut and dry.

**Advantage of End Project Sample Reviews**

Basing recall calculations on a sample made at the *end* of a review project is always better than relying on a sample made at the beginning. This is because final relevance standards will have been determined and fully articulated by the end of a project. Whereas at the beginning of any review project, the initial relevance standards will be tentative. They will typically change in the course of the review. This is known as *relevance shift*, where the understanding of relevance changes and matures during the course of the project.

This variance of adjudication between samples can be corrected during and at the end of the project by careful re-review and correction of initial sample relevance adjudications. This also requires correction of changes of all codings made during the review in the same way, not just inconsistencies in sample codings.

The time and effort spent to reconcile the adjudications might be better spent on a larger sample size of the final elusion sample. Except for major changes in relevance, where you would anyway have to go back and make corrections as part of quality control, it may not be worth the effort to remediate the first sample, just so you can still use it again at the end of the project with an elusion sample. That is because of the unfortunate *statistical fact of life, *that the two recall methods cannot be added to one another to create a third, more reliable number. I know. I tried. The two recall calculations are apples and oranges. Although a comparison between the two range values is *interesting*, they cannot somehow be stacked together to improve the reliability of either or both of them.

**Prevalence Samples May Still Help Guide Search, Even Though They Cannot Be Reliably Used to Calculate Recall**

I like to make a prevalence sample at the beginning of a project to get a *general* idea of the number of relevant documents there *might* be, and I emphasize *general* and *might*, in order to help with my search. I used to make recall calculation from that initial sample too, but no longer (except in small cases under the theory it is *better than nothing*), because it is simply too unreliable. The prevalence samples can help with search, but not with recall calculations used to test the quality of the search results. For quality testing it is better to sample the null set and calculate recall using the *ei-Recall* method.

Still, if you are like me, and like to take a sample at the start of a project for *search guidance purposes*, then you might as well do the math at the end of the project to see what the recall range estimate is using the prevalence method described in *In Legal Search Exact Recall Can Never Be Known*. It is interesting to compare the two recall ranges, especially if you take the time and trouble to go back and correct the first prevalence sample adjudications to match those of calls made in your second null set sample (that can eliminate the problem of concept drift and reviewer inconsistencies). Still, go with the recall range values of the *ei-Recall*, not prevalence. It is more reliable. Moreover, do not waste your time, as I did for weeks, trying to somehow average out the results. I traveled down that road and it is a dead-end.

**Claim for ei-Recall**

My claim is that *ei-Recall* is the most accurate *recall range estimate* method possible that uses *only* algebraic math within everyone’s grasp. (This statement is not exactly true because* binomial* confidence interval calculations are not simple algebra, but we avoid these calculations by use of an online calculator. Many are available.) I also claim that *ei-Recall* is more reliable, and less prone to error in more situations, than a standard prevalence based recall calculation, even if the prevalence recall includes ranges as I did in *In Legal Search Exact Recall Can Never Be Known*.

I also claim that my range based method of recall calculation is far more accurate and reliable than any simple point based recall calculations that ignore or hide interval ranges, including the popular *eRecall*. This later claim is based on what I proved in *In Legal Search Exact Recall Can Never Be Known, *and is not novel. It has long been known and accepted by all experts in random sampling, that recall projections that do not include high-low ranges are inexact and often worthless and misleading. And yet attorneys and judges are still relying on point projections of recall to certify the reasonableness of search efforts. **The legal profession and our courts need to stop relying on such bogus science and turn instead to ei-Recall.**

I am happy to concede that scientists who specialize in this area of knowledge like Dr. Webber and Professor Cormack can make *slightly* more accurate and robust calculations of binomial recall range estimates by using extremely complex calculations such as Webber’s *Beta-binomial* formula.

Such alternative *black box* type approaches are, however, disadvantaged by the additional expense from expert consultations and testimony to implement and explain. (Besides, at the present time, neither Webber nor Cormack are available for such consultations.) My approach is based on multiplication and division, and simple logic. It is well within the grasp of any attorney or judge (or anyone else) who takes the time to study it. My relatively simple system thus has the advantage of ease of use, ease of understanding, and *transparency*. These factors are very important in legal search.

Although the *ei-Recall* formula may seem complex at first glance, it is really just ratios and proportions. I reject the argument some make that calculations like this are too complex for the average lawyer. Ratios and proportions are part of the Grade 6 Common Core Curriculum. Reducing word problems to ratios and proportions is part of the Grade 7 Common Core, so too is basic statistics and probability.

**Overview of How ei-Recall Works**

*ei-Recall* is designed for use at the end of a search project as a final quality assurance test. A single random sample is taken of the documents that are not marked relevant and so will not be produced or privileged-logged – the *Negatives*. (As mentioned, definition and scope of the *Negatives* can be varied depending on project circumstances.) The sample is taken to estimate the total number of *False Negatives*, documents falsely presumed irrelevant that are in fact relevant. The estimate projects a range of the probable total number of *False Negatives* using a binomial interval range in accordance with the sample size. A simplistic and illusory point value projection is not used. The high end of the range of probable *False Negatives* is shown in the formula and graphic as **FNh. **The** **low end of the projected range of *False Negatives* is **FNl**.

This type of search is generally called an *elusion* based recall search. As will be discussed here in some detail, well-known software expert and entrepreneur, Herb Rotiblat, who has a PhD in psychology, advocates for the use of a similar elusion based recall calculation that uses only the *point projection* of the total *False Negatives*. He has popularized a name for this method: *eRecall, *and uses it with his company’s software.

I here offer a more accurate alternative that avoids the statistical fallacies of point projections. Rotiblat’s *eRecall*, and other ratio calculations like it, ignore the interval high and low range range inherent in all sampling. My version includes *interval *range, and for this reason an “**i**” is added to the name:* e i-Recall*.

* ei-Recall* is more accurate than

*eRecall*, especially when working with low prevalence datasets, and, unlike

*eRecall*, is not misleading because it shows the total range of recall. It is also more accurate because it uses the exact count of the documents verified as relevant at the end of the project, and does not

*estimate*the

*True Positives*value. I offer

*ei-Recall*to the e-discovery community as a statistically valid alternative, and urge its speedy adoption.

*Contingency Table* Background

A review some of the basic concepts and terminology used in this article may be helpful before going further. It is also important to remember that *ei-Recall* is a method for *measuring* recall, not *attaining* recall. There is a fundamental difference. Many of my other articles have discussed search and review methods to *achieve* recall, but this one does not.* See eg*.

*Latest Grossman and Cormack Study Proves Folly of Using Random Search For Machine Training*– Part One, Part Two, Part Three, and Part Four.*Predictive Coding and the Proportionality Doctrine: a Marriage Made in Big Data*, 26 Regent U. Law Review 1 (2013-2014).*Less Is More: When it comes to predictive coding training, the “fewer reviewers the better”*– Parts One, Two, and Three.*Three-Cylinder Multimodal Approach To Predictive Coding.*

This article is focused on the very different topic of *measuring* recall as one method among many to assure quality in large-scale document reviews.

Everyone should know that in legal search analysis *False Negatives* are documents that were falsely predicted to be irrelevant, that are in fact relevant. They are mistakes. Conversely, documents predicted irrelevant, that are in fact irrelevant, are called *True Negatives*. Documents predicted relevant that are in fact relevant are called *True Positives*. Documents predicted relevant that are in fact irrelevant are called *False Positives*.

These terms and formulas derived therefrom are set forth in the *Contingency Table*, a/k/a *Confusion Matrix*, a tool widely used in information science. *Recall* using these terms is the total number of relevant documents found, the *True Positives* (TP), divided by that same number, plus the total number of relevant documents *not found*, the *False Negatives *(FN). Recall is the percentage of total target documents found in any search.

**CONTINGENCY TABLE**

Truly Non-Relevant | Truly Relevant | |

Coded Non-Relevant | True Negatives (“TN”) | False Negatives (“FN”) |

Coded Relevant | False Positives (“FP”) | True Positives (“TP”) |

**The standard formula for Recall using contingency table values is: R = TP / (TP+FN).**

**The standard formula for Prevalence is: P = (TP + FN) / (TP + TN + FP + FN).**

*The Grossman-Cormack Glossary of Technology Assisted Review. Also see: *LingPipe Toolkit* c*lass on *PrecisionRecallEvaluation*.

** General Background on Recall Formulas**

Before I get into the examples and math for *ei-Recall*, I want to provide more general background. In addition, I suggest that you re-read my short description of an *elusion* test at the end of Part Three of *Visualizing Data in a Predictive Coding Project. *It provides a brief description of the other quality control applications of the elusion test for *False Negatives*.* *If you have not already done so, you should also read my entire article,* In Legal Search Exact Recall Can Never Be Known. *

I also suggest that you read John Tredennick’s excellent article: *Measuring Recall in E-Discovery Review: A Tougher Problem Than You Might Realize*, especially Part Two of that article. I give a big *Amen* to John’s *tough problem* insights.

For the more technical and mathematically minded, I suggest you read the works of William Webber, including his key paper on this topic, Approximate Recall Confidence Intervals (January 2013, Volume 31, Issue 1, pages 2:1–33) (free version in arXiv),* *and his many less formal and easier to understand blogs on the topic: *Why confidence intervals in e-discovery validation?* (12/9/12); *Why training and review (partly) break control sets,* (10/20/14); *Why 95% +/- 2% makes little sense for e-discovery certification,* (5/25/13); *Stratified sampling in e-discovery evaluation*, (4/18/13); *What is the maximum recall in re Biomet?*, (4/24/13). Special attention should be given to Webber’s recent article on Roitblat’s *eRecall*, *Confidence intervals on recall and eRecall* (1/4/15), where it is tested and found deficient on several grounds,

My idea for a recall calculation that includes* binomial* confidence intervals, like most ideas, is not truly original. It is, as our friend Voltaire puts it, a *judicious imitation.** *For instance*, *I am told that my proposal to use comparative binomial calculations to determine approximate confidence interval ranges follows somewhat the work of an obscure Dutch medical statistician, P. A. R. Koopman, in the 1980s. *See*: Koopman, *Confidence intervals for the ratio of two binomial proportions,* Biometrics 40: 513–517 (1984). *Also see*: Webber, William,* **Approximate Recall Confidence Intervals, *ACM Transactions on Information Systems, Vol. V, No. N, Article A (October 2012); Duolao Wang,* **Confidence intervals for the ratio of two binomial proportions by Koopman’s method, *Stata Technical Bulletin, 10-58, 2001.

As mentioned, the recall method I propose here is also similar to that promoted by Herb Roitbalt – *eRecall –* except that avoids its fundamental defect. I include *binomial* intervals in the calculations to provide an elusion recall range, and his method does not. *Measurement in eDiscovery* (2013). Herb’s method relies solely on point projections and disregards the ranges of both the *Prevalence* and *False Negative* projections. That is why no statistician will accept Rotibalt’s *eRecall, *whereas *ei-Recall *has already been reviewed without objection by two of the leading authorities in the field, William Webber and Gordon Cormack.

*ei-Recall* is also a superior method because it is based on a specific number of relevant documents found at the end of the project, the *True Positives* (**TP**). That is not an estimated number. It is not a projection based on sampling where a confidence interval range and more uncertainty are necessarily created. *True Positives* in *ei-Recall* is the number of relevant documents in a legal document production (or privilege log). It is an exact number *verified* by multiple reviews and other quality control efforts set forth in steps six, seven and eight in *Electronic Discovery Best Practices *(EDBP), and then *produced* in step nine (or logged).

In a predictive coding review the *True Positives* as defined by *ei-Recall* are the documents predicted relevant, and then confirmed to be relevant in second pass reviews, etc., and produced and logged. (*Again see:* Step 8 of the EDBP, which I call *Protections.*)* *The production is presumed to be a 100% precise production, or at least as close as is humanly possible, and contain no *False Positives*. For that reason *ei-Recall* may not be appropriate in all projects. Still, it could also work, if need be, by estimating the *True Positives*. The fact that *ei-Recall* includes interval ranges in and of itself make it superior and more accurate that any other ratio method.

In the usual application of *ei-Recall*, only the number of relevant documents missed, the *False Negatives*, is estimated. The actual number of relevant *documents found* (**TP**) is divided by the sum of the projected range of *False Negatives* from the samples of the* null *set of each strata*,* both high (**FNh**) and low (**FNl**), and the number of relevant *documents found* (**TP**). This method is summarized by the following formulas:

Formula for the lowest end of the recall range from the null set sample: **Rl = TP / (TP+FNh)**.

Formula for the highest end of the recall range from the null set sample: **Rh = TP / (TP+FNl)**.

This is a very different from the approach used by Herb Roitblat for *eRecall.* Herb’s approach is to sample the entire collection to calculate a point projection of the probable total number of relevant documents in the collection, which I will here call **P**. He then takes a second random sample of the *null set* to calculate the point projection of the probable total *False Negatives* contained in the *null set* (**FN**). Roitblat’s approach only uses point projections and ignores the interval ranges inherent in each sample. My approach uses one sample and includes its confidence interval range. Also, as mentioned, my approach uses a validated number of *True Positives* found at the end of a review project, and not a projection of the probable total number of relevant documents found (**P**). Although Herb never uses a formula *per se* in his paper, *Measurement in eDiscovery,* to describe his approach, if we use the above described definitions the formula for *eRecall* would seem to be: **eR = P / (P + FN). **(Note there are other speculations as to what Roitblat’s really intends here, as discussed in the comments to Webber’s blog on eRecall. One thing we know for sure, is that although he may change the details to his approach, it never includes a recall range, just a spot projection.)

My approach of making two recall calculations, one for the low end, and another for the high end, is well worth the slight additional time to create a range. Overall the effort and cost of *ei-Recall* is significantly less than *eRecall* because only one sample is used in my method, not two. My method significantly improves the reliability of recall estimates and overcomes the defects inherent in ignoring confidence intervals found in *eRecall* and other methods such as the *Basic Ratio Method* and *Global Method. **See Eg*: Grossman & Cormack, * Comments on ‘The Implications of Rule 26(g) on the Use of Technology-Assisted Review,’ *Federal Courts Law Review, Vol. 7, Issue 1 (2014) at 306-310.

The use of range values avoids the trap of using a point projection that may be very inaccurate. The point projections of *eRecall* may be way off from the* true value*, as was explained in detail by* In Legal Search Exact Recall Can Never Be Known. *Moreover,

*ei-Recall*fits in well with the overall work flow of my current two-pass,

*CAL-based*(continuous active learning), hybrid, multimodal search and review method.

**Recall Calculation Methods Must Include Range**

A fuller explanation of Herb Rotiblat’s *eRecall* proposal, and other similar *point projection based* proposals, should help clarify the larger policy issues at play in the proposed alternative *ei-Recall* approach.

Again, I cannot accept Herb Roitblat’s approach to using an *Elusion* sample to calculate recall because he uses the *point projection* of prevalence and elusion only, and does not factor in the recall interval ranges. My reason for opposing this simplification was set out in detail *In Legal Search Exact Recall Can Never Be Known*. It is scientifically and mathematically wrong to use point projections and not include ranges.

I note that industry leader John Tredennick also disagrees with Herb’s approach. *See* his recent article: *Measuring Recall in E-Discovery Review: A Tougher Problem Than You Might Realize*, Part Two. After explaining Herb’s *eRecall* John says this:

Does this work? Not so far as I can see. The formula relies on the initial point estimate for richness and then a point estimate for elusion.

I agree with John Tredennick in this criticism of Herb’s method. So too does Bill Dimm, who has a PhD in Physics and is the founder and CEO of Hot Neuron. Bill summarizes Herb’s *eRecall* method in his article, *eRecall: No Free Lunch. *He uses an example to show that *eRecall* does not work at all in low prevalence situations. Of course, all sampling is challenged by extremely low prevalence, even *ei-Recall*, but at least my interval approach does not hide the limitations of such recall estimates. There is no free lunch. Recall estimates are just one quality control effort among many.

Maura Grossman and Gordon Cormack also challenge the validity of Herb’s method. They refer to Roitblat’s *eRecall* as a *specious *argument. Grossman and Cormack make the same judgment about several other approaches that compare the ratios of point projections and show how they all suffer from a basic mathematical statistical error, which they call the *Ratio Method Fallacy. Comments on ‘The Implications of Rule 26(g) on the Use of Technology-Assisted Review,’ supra* at

*308-309.*

In Grossman & Cormack’s, *Guest Blog: Talking Turkey* (e-Discovery Team, 2014) they explained an experiment that they did and reported on in the *Comments* article where they repeatedly used Roitblat’s* eRecall*, the direct method, and other methods to estimate recall. They used a review known to have achieved 75% recall and 83% precision, from a collection with 1% prevalence. They results showed that in this review “*eRecall provides an estimate that is no better than chance.” *That means *eRecall* was a complete failure as a quality assurance measure.

Although my proposed range method is a comparative *Ratio Method, *it avoids the fallacy of other methods criticized by Grossman and Cormack. It does so because it includes binomial probability ranges in the recall calculations and eschews the errors of point projection reliance. It is true that the range of recall estimates using *ei-Recall* may be still uncomfortably large in some low yield projects, but at least it will be real and honest, and, unlike *eRecall*, it is better than nothing.

**No Legal Economic Arguments Justify the Errors of Simplified Point Projections **

The oversimplified *point projection ratio approach* can lead to a false belief of certainty for those who do not understand probability ranges inherent in random samples. We presume that Herb Roitblat understands the probability range issues, but he chooses to simplify anyway on the basis of what appears to me to be essentially legal-economic arguments, namely proportionality cost-savings, and the inherent vagaries of legal relevance. Roitblat, *The Pendulum Swings: Practical Measurement in eDiscovery.*

I disagree strongly with Roitblat’s logic. As one scholar in private correspondence pointed out, Herb appears to fall victim to the classic ** fallacy of the converse.** Herb asserts that “if the point estimate is X, there is a 50% probability that the true value is greater than X.” What *is* true (for an unbiased estimate) is that “if the

*true value*is X, there is a 50% probability that the estimate is greater than X.” Assuming the latter implies the former is classic

*fallacy of the converse.*Think about it. It is a very good point. For a more obvious example of the

*fallacy of the converse*consider this: “Most accidents occur within 25 miles from home; therefore, you are safest when you are far from home.”

Although I disagree with Herb Roitblat’s logic, I do basically agree with many* *of his non-statistical arguments and observations on document review, including, for instance, the following:

*Depending on the prevalence of responsive documents and the desired margin-of-error, the effort needed to measure the accuracy of predictive coding can be more than the effort needed to conduct predictive coding.*

*Until a few years ago, there was basically no effort expended to measure the efficacy of eDiscovery. As computer-assisted review and other technologies became more widespread, an interest in measurement grew, in large part to convince a skeptical audience that these technologies actually worked. Now, I fear, the pendulum has swung too far in the other direction and it seems that measurement has taken over the agenda.*

*There is sometimes a feeling that our measurement should be as precise as possible. But when the measure is more precise than the underlying thing we are measuring, that precision gives a false sense of security. Sure, I can measure the length of a road using a yardstick and I can report that length to within a fraction of an inch, but it is dubious whether the measured distance is accurate to within even a half of a yard.*

Although I agree with many of the points of Herb’s legal economic analysis in his article, *The Pendulum Swings: Practical Measurement in eDiscovery, *I disagree with the conclusion.* *The quality of the search software, and legal search skills of attorney-users of this software, have both improved significantly in the past few years. It is now possible for *relatively high* recall levels to be attained, even including ranges, and even without incurring extraordinary efforts and costs as Herb and others suggest. (As a side note, please notice that I am *not opining* on a specific minimum recall number. That is not helpful because it depends on too many variable factors unique to particular search projects. However, I would point out that in the TREC Legal Track studies in 2008 and 2009 the participants, expert searchers all, attained verified recall levels of only 20% to 70%. *See The Legal Implications of What Science Says About Recall. *All I am saying is that in my experience our recall efforts have improved and are continually improving as our software and skills improve.)

Further, although relevance and responsiveness can sometimes be vague and elusive as Roitblat points out, and human judgments can be wrong and inconsistent, there are quality control process steps that can be taken to significantly mitigate these problems, including the often overlooked better dialogues with the requesting party. Legal search is not an arbitrary exercise such that it is a complete waste of time to try to accurately measure recall.

I disagree with Herb’s suggestion to the contrary based on his evaluation of legal relevance judgments. He reaches this conclusion based on the very interesting study he did with Anne Kershaw and Patrick Oot on a large-scale document review that Verizon did nearly a decade ago. *Document Categorization in Legal Electronic Discovery: Computer Classification vs. Manual Review. *In that review Verizon employed 225 contract reviewers and a *Twentieth Century* linear review method wherein low paid contract lawyers sat in isolated cubicles and read one document after another. The study showed, as Herb summarizes it, that *the reviewers agree with one another on relevance calls only about 50% of the time.”* *Measurement in eDiscovery* at pg. 6. He takes that finding as support for his contention that consistent legal review is impossible and so there is no need to bother with finer points of recall intervals.

I disagree. My experience as an attorney making judgments on the relevancy of documents since 1980 tells me otherwise. It is absurd, even insulting, to call legal judgment a mere matter of coin flipping. Yes, there are well-known issues with consistency in legal review judgments in large-scale reviews, but this just makes the process more challenging, more difficult, not impossible.

Although consistent review may be impossible if large teams of contract lawyers do linear review in isolation using yesterday’s technology, that does not mean consistent legal judgments are impossible. It just means the large team linear review process is deeply flawed. That is why the industry has moved away from the approaches used by the Verizon team review nearly ten years ago. We are now using predictive coding, small teams of SMEs and contract lawyers, and many new innovative quality control procedures, including soon, I hope, *ei-Recall*. The large team linear review approach of a decade ago, and other quality factors, were the primary causes of the inconsistencies seen in the Verizon approach, not the inherent impossibility of determining legal relevance.

**Good Recall Results Are Possible Without Heroic Efforts
But You Do Need Good Software and Good Methods**

Even with the consistency and human error challenges inherent in all legal review, and even with the ranges of error inherent in any valid recall calculation, it is, I insist, still possible to attain relatively high recall ranges in most projects. (Again, note that I will not commit to a specific general minimum range.) I am seeing better recall ranges attained in more and more of my projects and I am certainly not a mythical *TAR-whisperer*, as Grossman and Cormack somewhat *tongue in cheek* described lawyers who *may* have extraordinary predictive coding search skills.* Comments on ‘The Implications of Rule 26(g) on the Use of Technology-Assisted Review,’ *at pg. 298. Any experienced lawyer with technology aptitude can attain impressive results in large-scale document reviews. They just need to use hybrid, multimodal, CAL-type, quality controlled, search and review methods. They also need to use proven, high quality,

*bona fide*predictive coding software. I am able to teach this in practice with bright, motivated, hard-working, technology savvy lawyers.

Legal search is a *new* legal skill to be sure, just like countless others in e-discovery and other legal fields. I happen to find the search and review challenges more interesting than the large enterprise preservation problems, but they are both equally difficult and complex. *TAR-whispering* is probably an easier skill to learn than many others required today in the law. (It is certainly easier than becoming a *dog whisperer* like Cesar Millan. I know. I’ve tried and failed many times.)

Think of the many arcane *choice of law* issues U.S. lawyers have faced for over a century in our 50-state, plus federal law system. Those intellectual problems are more difficult than predictive coding. Think of the tax code, securities, M&A, government regulations, class actions. It is all hard. All difficult. But it can all be learned. Like everything else in the law, large-scale document review just requires a little aptitude, hard work and lots of legal practice. It is no different from any other challenge lawyers face. It just happens to require more software skills, sampling, basic math, and AI intuition than any other legal field.

On the other point of *bona fide* predictive coding software, while I will not name names, as far as I am concerned the only *bona fide *software on the market today uses* active machine learning *algorithms. It does not depend instead on some kind of passive learning process (although they too can be quite effective, they are not predictive coding algorithms, and, in my experience, do not provide as powerful a search tool). I am sorry to say that some legal review software on the market today falsely claims to have predictive coding features, when, in fact, it does not. It is only passive learning, more like concept search, than *AI-enhanced* search. With software like that, or even with good software where the lawyers use poor search and review methods, or do not really know what they are searching for (poor relevance scope), then the efforts required to attain high recall ranges may indeed be very extensive and thus cost prohibitive as Herb Roitblat argues. If your tools and or methods are poor, it takes much longer to reach your goals.

One final point regarding Herb’s argument, I do not think *sampling* really needs to be as cost prohibitive as he and others suggest. As noted before in *In Legal Search Exact Recall Can Never Be Known*, one good SME and skilled contract review attorney can carefully review a sample of 1,534 documents for between $1,000 and $2,000. In large review projects that is hardly a cost prohibitive barrier. There is no need to be thinking in terms of small 385 document sample sizes, which create a huge margin of error of 5%. This is what Herb Rotiblat and others do when suggesting that all sampling is anyway ineffective, so just ignore intervals and ranges. Any large project can afford a full sample of 1,534 documents to cut the interval in half to a 2.5% margin of error. Many can afford much larger samples to narrow the interval range even further, especially if the tools and methods used allow them to attain their recall range goals in a fast and effective manner.

John Tredennick, who, like me, is an attorney, also disagrees with Herb’s legal-economic analysis in favor of *eRecall*, but John proposes a solution involving larger sample sizes, wherein the increased cost burden would be shifted onto the requesting party. *Recall in E-Discovery Review: A Tougher Problem Than You Might Realize*, Part Two. I do not disagree with John’s assertions in his article, and cost shifting may be appropriate in some cases. It is not, however, my intention to address the cost-shifting arguments here, or the other good points made in John’s article. Instead, my focus in the remaining section of this article will be to provide a series of examples of *ei-Recall* in action. For me, and I suspect for many of you, seeing a method in action is the best way to understand it.

**Summary of the Five Reasons ei-Recall is the new Gold Standard**

Before moving onto the samples, I wanted to summarize what we have covered so far and go over the five main reasons *ei-Recall* is superior to all other recall methods. First, and most important, is the fact *ei-Recall* calculates a recall range, and not just one number. As shown by* In Legal Search Exact Recall Can Never Be Known, *recall statements must include confidence interval range values to be meaningful. Recall should not be based on point projections alone. Therefore any recall calculation method must calculate both a high and low value. The

**method I offer here is designed for the correct high low interval range calculations. That, in itself, makes it a significant improvement over all point projection recall methods.**

*ei-Recall*The second advantage of *ei-Recall* is that is only uses *one random sample*, not two, or more. This avoids the compounding of variables, uncertainties, and outlier events inherent in any system that uses multiple chance events, multiple random samples. The costs are also controlled better in a one sample method like this, especially since the one sample is of reasonable size. This contrasts with the *Direct Method*, which also uses one sample, but the sample has to be insanely large. That is not only very costly, but also introduces a probability of more human error in inconsistent relevancy adjudications.

The timing of the one sample in *ei-Recall* is another of its advantages. It is taken at the *end* of the project when the relevance scope has been fully articulated.

Another key advantage of *ei-Recall* is that the *True Positives* used for the calculation are not estimated, and are not projected by random samples. They are documents confirmed to be relevant by multiple quality control measures, including multiple reviews of these documents by humans, or computer, and often both.

Finally, *ei-Recall* has the advantage of simplicity, and ease of use. It can be carried out by any attorney who knows fractions. The only higher math required, the calculation of binomial confidence intervals, can be done by easily available online calculators. You do not need to hire a statistician to make the recall range calculations using *ei-Recall*.

*To be continued.*

**First Example of How to Calculate Recall Using the ei-Recall Method**

Let us begin with the same simple hypothetical used in* In Legal Search Exact Recall Can Never Be Known.* Here we assume a review project of 100,000 documents. By the end of the search and review, when we could no longer find any more relevant documents, we decided to stop and run our

*ei-Recall*quality assurance test. We had by then found and verified 8,000 relevant documents, the

*True Positives*. That left 92,000 documents presumed irrelevant that would not be produced, the

*Negatives*.

As a side note, the *decision to stop* may be *somewhat informed* by running estimates of possible recall range attained based on early prevalence assumptions from a sample of all documents at or near the beginning of the project. The prevalence based recall range estimate would not, however, be the sole driver of the decision to stop and test. The prevalence based recall estimates alone can be very unreliable as shown * In Legal Search Exact Recall Can Never Be Known.* That is one of the main reasons for developing the

*ei-Recall*alternative. I explained the thinking behind the

*decision to stop*in

*Visualizing Data in a Predictive Coding Project – Part Three.*

I will not have stopped the review in most projects (proportionality constraints aside), unless I was confident that I had already found all of those (highly relevant) types of documents; already found all types of strong relevant documents, and already found all highly relevant document, even if they are cumulative. I want to find each and every instance of all hot (highly relevant) documents that exists in the entire collection. I will only stop (proportionality constraints aside) when I think the only relevant documents I have not recalled are of an unimportant, cumulative type; the merely relevant. The truth is, most documents found in e-discovery are of this type; they are merely relevant, and of little to no use to anybody except to find the strong relevant, new types of relevant evidence, or highly relevant evidence.

Back to our hypothetical. We take a sample of 1,534 (95%+/-2.5%) documents, creating a 95% confidence level and 2.5% confidence interval, from the 92,000 *Negatives. *This allows us to estimate how many relevant documents had been missed, the *False Negatives*.

Assume we found only 5 *False Negatives*. Conversely, we found that 1,529 of the documents picked at random from the *Negatives* were in fact irrelevant as expected. They were *True Negatives*.

The percentage of *False Negatives* in this sample was thus a low 0.33% (5/1534). Using the *Normal*, but wrong, *Gaussian* confidence interval the projected total number of *False Negatives* in the entire 92,000 *Negatives *would thus be between 5 and 2,604 documents (0.33%+2.5%= 2.83% * 92,000). Using the *binomial* interval calculation the range would be from 0.11% to 0.76%. The more accurate *binomial* calculation eliminates the absurd result of a negative interval on the low recall range (.33% -2.5%= -2.17). The fact that negative recall arises from using the *Gaussian* normal distribution demonstrates why the *binomial* interval calculation should always be used, not *Gaussian*, especially in low prevalence. From this point forward, in accordance with the *ei-Recall* method, we will only use the more accurate *Binomial* range calculations. Here the correct range generated by the binomial interval is from **between** **101** (92,000 * 0.11%) and **699** (92,000 * 0.76%) ** False Negatives**. Thus the

**FNh**value is 699, and

**FNl**is 101.

The calculation of the* lowest end* of the recall range is based on the *high end* of the *False Negatives* projection: **Rl = TP / (TP+FNh) = 8,000 / (8,000 + 699) = 91.96% **

The calculation of the *highest end* of the recall range is based on the *low end* of the *False Negatives* projection: **Rh = TP / (TP+FNl) = 8,000 / (8,000 + 101) = 98.75%.**

Our final recall range values for this first hypothetical is thus from **92%- 99%** recall. It was an unusually good result.

It is important to note that we could have still *failed* this quality assurance test, in spite of the high recall range shown, if any of the five *False Negatives* found was a highly relevant, or unique-strong relevant document. That is in accord with the *accept on zero error* standard that I always apply to the final elusion sample, a standard having nothing directly to do with *ei-Recall*. Still, I recommend that the e-discovery community also accept this as a corollary to implement *ei-Recall. *I have previously explained this *zero error* quality assurance protocol on this blog several times, most recently in *Visualizing Data in a Predictive Coding Project – Part Three* where I explained:

I always use what is called an *accept on zero error* protocol for the elusion test when it comes to highly relevant documents. If any are highly relevant, then the quality assurance test automatically fails. In that case you must go back and search for more documents like the one that eluded you and must train the system some more. I have only had that happen once, and it was easy to see from the document found why it happened. It was a black swan type document. It used odd language. It qualified as a highly relevant under the rules we had developed, but just barely, and it was cumulative. Still, we tried to find more like it and ran another round of training. No more were found, but still we did a third sample of the null set just to be sure. The second time it passed.

**Variations of First Example with Higher False Negatives Ranges**

I want to provide two variations of this hypothetical where the sample of the *null set, Negatives, *finds more mistakes, more *False Negatives*. Variations like this will provide a better idea of the impact of the *False Negatives* range on the recall calculations. Further, the first example wherein I assumed that only five mistakes were found in a sample of 1,534 is somewhat unusual. A point projection ratio of 0.33% for elusion is on the low side for a typical legal search project. In my experience in most projects a higher rate of *False Negatives* will be found, say in the 0.5% to 2% range.

Let us assume for the first variation that instead of finding 5 *False Negatives*, we find 20. That is a *quadrupling* of the *False Negatives*. It means that we found 1,514 *True Negatives* and 20 *False Negatives* in the sample of 1,534 documents from the 92,000 document discard pile. This creates a point projection of 1.30% (20 / 1534), and a *binomial* range of 0.8% to 2.01%. This generates a projected range of total *False Negatives* of from **736** (92,000 * .8%) to **1,849** (92,000 * 2.01%).

Now let’s see how this quadrupling of errors found in the sample impacts the recall range calculation.

The calculation of the* low end* of the recall range is based on the *high end* of the *False Negatives* projection: **Rl = TP / (TP+FNh) = 8,000 / (8,000 + 1,849) = 81.23% **

The calculation of the *high end* of the recall range is based on the *low end* of the *False Negatives* projection: **Rh = TP / (TP+FNl) = 8,000 / (8,000 + 736) = 91.58%.**

Our final recall range values for this variation of the first hypothetical is thus** 81% – 92%**.

In this first variation the quadrupling of the number of *False Negatives* found at the end of the project, from 5 to 20, caused an approximate 10% decrease in recall values from the first hypothetical where we attained a recall range of 92% to 99%.

Let us assume a second variation that instead of finding 5 *False Negatives*, finds 40. That is eight times the number of *False Negatives *found in the first hypothetical. It means that we found 1,494 *True Negatives* and 40 *False Negatives* in the sample of 1,534 documents from the 92,000 document discard pile. This creates a point projection of 2.61% (40/1534), and a *binomial* range of 1.87% to 3.53%. This generates a projected range of total *False Negatives* of from **1,720** (92,000*1.87%) to **3,248** (92,000*3.53%).

The calculation of the* low end* of the recall range is based on the *high end* of the *False Negatives* projection: **Rl2 = TP / TP+FNh = 8,000 / (8,000 + 3,248) = 71.12% **

The calculation of the *high end* of the recall range is based on the *low end* of the *False Negatives* projection: **Rh2 = TP / TP+FNl = 8,000 / (8,000 + 1,720) = 82.30%.**

Our recall range values for this variation of the first hypothetical is thus** 71% – 82%**.

In this second variation the eightfold increase of the number of *False Negatives* found at the end of the project, from 5 to 20, caused an approximate 20% decrease in recall values from the first hypothetical where we attained a recall range of 92% to 99%.

**Second Example of How to Calculate Recall Using the ei-Recall Method**

We will again go back to the second example used in* In Legal Search Exact Recall Can Never Be Known. *The second hypothetical assumes a total collection of 1,000,000 documents and that

**210,000**relevant documents were found and verified.

In the random sample of 1,534 documents (95%+/-2.5%) from the 790,000 documents withheld as irrelevant (1,000,000 – 210,000) we assume that only ten mistakes were uncovered, in other words, 10 *False Negatives*. Conversely, we found that 1,524 of the documents picked at random from the *discard pile* (another name for the *Negatives*) were in fact irrelevant as expected; they were *True Negatives*.

The percentage of *False Negatives* in this sample was thus 0.65% (10/1534). Using the *binomial* interval calculation the range would be **from 0.31% to 1.2%**. The range generated by the binomial interval is from **2,449** (790,000*0.31%) to **9,480** (790,000*1.2%) ** False Negatives**.

The calculation of the* lowest end* of the recall range is based on the *high end* of the *False Negatives *projection: **Rl2 = TP / TP+FNh = 210,000 / (210,000 + 9,480) = 95.68% **

The calculation of the *highest end* of the recall range is based on the *low end* of the *False Negatives* projection: **Rh2 = TP / TP+FNl = 210,000 / (210,000 + 2,449) = 98.85%.**

Our recall range for this second hypothetical is thus **96% – 99%** recall. This is a highly unusual, truly outstanding result. It is, of course, still subject to the outlier result uncertainty inherent in the confidence level. In that sense my labels on the diagram below of “worst” or “best” case scenario are not correct. It could be better or worse in five times out of one hundred times the sample is drawn in accord with the 95% confidence level. *See* the discussion near the end of my article *In Legal Search Exact Recall Can Never Be Known*, regarding the role that luck necessarily plays in any random sample. This could have been a lucky draw, but nevertheless, it is just one quality assurance factor among many, and is still an extremely good recall range achievement.

**Variations of Second Example with Higher False Negatives Ranges**

I now offer three variations of the second hypothetical where each has a higher *False Negative* rate. These examples should better illustrate the impact of the elusion sample on the overall recall calculation.

Let us first assume that instead of finding 10 *False Negatives*, we find 20, a doubling of the rate. This means that we found 1,514 *True Negatives* and 20 *False Negatives* in the sample of 1,534 documents in the 790,000 document discard pile. This creates a point projection of 1.30% (20/1534), and a *binomial* range of 0.8% to 2.01%. This generates a projected range of total *False Negatives* of from **6,320** (790,000*.8%) to **15,879** (790,000*2.01%).

Now let us see how this doubling of errors in the second sample impacts the recall range calculation.

The calculation of the* low end* of the recall range is: **Rl = TP / (TP+FNh) = 210,000 / (210,000 + 15,879) = 92.97% **

The calculation of the *high end* of the recall range is: **Rh = TP / (TP+FNl) = 210,000 / (210,000 + 6,320) = 97.08%.**

Our recall range for this first variation of the second hypothetical is thus **93% – 97%**

The doubling of the number of *False Negatives* from 10 to 20, caused an approximate **2.5%** decrease in recall values from the second hypothetical where we attained a recall range of 96% to 99%.

Let us assume a second variation where instead of finding 10 *False Negatives *at the end of the project, we find 40. That is a quadrupling of the number of *False Negatives *found in the first hypothetical. It means that we found 1,494 *True Negatives* and 40 *False Negatives* in the sample of 1,534 documents from the 790,000 document discard pile. This creates a point projection of 2.61% (40/1534), and a *binomial* range of 1.87% to 3.53%. This generates a projected range of total *False Negatives* of from **14,773** (790,000*1.87%) to **27,887** (790,000*3.53%).

The calculation of the* low end* of the recall range is now: **Rl = TP / (TP+FNh) = 210,000 / (210,000 + 27,887) = 88.28% **

The calculation of the *high end* of the recall range is now: **Rh = TP / (TP+FNl) = 210,000 / (210,000 + 14,773) = 93.43%.**

Our recall range for this second variation of second hypothetical is thus **88% – 93%.**

The quadrupling of the number of *False Negatives* from 10 to 40, caused an approximate** 7%** decrease in recall values from the original where we attained a recall range of 96% to 99%.

If we do a third variation and increase the number of *False Positives* found by eight-times, from 10 to 80, this changes the point projection to 5.22% (80/1534), with a *binomial* range of 4.16% to 6.45%. This generates a projected range of total *False Negatives* of from **32,864** (790,000*4.16%) to **50,955** (790,000*6.45%).

The calculation of the* low end* of the recall range is: **Rl = TP / (TP+FNh) = 210,000 / (210,000 + 50,955) = 80.47%. **

The calculation of the *high end* of the recall range is: **Rh = TP / (TP+FNl) = 210,000 / (210,000 + 32,864) = 86.47%.**

Our recall range for this third variation of the second hypothetical is thus **80% – 86%**.

The eightfold increase of the number of *False Negatives*, from 10 to 80, caused an approximate** 15%** decrease in recall values from the second hypothetical where we attained a recall range of 96% to 99%.

By now you should have a pretty good idea of how the *ei-Recall* calculation works, and a feel for how the number of *False Negatives* found impacts the overall recall range.

**Third Example of How to Calculate Recall Using the ***ei-Recall* Method where there is *Very Low* Prevalence

A criticism of many recall calculation methods is that they fail and become completely useless in very low prevalence situations, say 1%, or sometimes even less. Such low prevalence is considered by many to be common in legal search projects.

Obviously it is much harder to find things that are very rare, such as the famous, and very valuable, *Inverted Jenny* postage stamp with the upside down plane. These stamps exist, but not many. Still, it is at least possible to find them (or buy them), as opposed to a search for a *Unicorn *or other complete fiction. (Please, *Unicorn* lovers, no hate mail!) These creatures cannot be found no matter how many searches and samples you take because they do not exist. There is absolute zero prevalence.

This circumstance sometimes happens in legal search, where one side claims that mythical documents must exist because they want them to. They have a strong suspicion of their existence, but no proof. More like hope, or wishful thinking. No matter how hard you look for such *smoking guns*, you cannot find them. You cannot find something that does not exist. All you can do is show that you made reasonable, good faith efforts to find the *Unicorn* documents, and they did not appear. Recall calculations make no sense in crazy situations like that because there is nothing to recall. Fortunately that does not happen too often, but it does happen, especially in the wonderful world of employment litigation.

We are not going to talk further about a search for something that does not exist, like a *Unicorn*, the zero prevalence. We will not even talk about the extremely, extremely rare, like the *Inverted Jenny*. Instead we are going to talk about prevalence of about 1%, which is still very low.

In many cases, but not all, very low prevalence like 1%, or less, can be avoided, or at least mitigated, by *intelligent culling*. This certainly does not mean filtering out all documents that do not have certain keywords. There are other, more reliable methods than simple keywords to eliminate superfluous irrelevant documents, including elimination by file type, date ranges, custodians, and email domains, among other things.

When there is a very low prevalence of relevant documents, this necessarily means that there will be a very large *Negatives* pool, thus diluting the sampling. There are ways to address the large *Negatives* sample pool, as I discussed previously. The most promising method is to cull out the low end of the probability rankings where relevant documents should anyway be non-existent.

Even with the smartest culling possible, low prevalence is often still a problem in legal search. For that reason, and because it is the hardest test for any recall calculation method, I will end this series of examples with a completely new hypothetical that considers a very low prevalence situation of only 1%. This means that there will be a large size *Negatives* pool: 99% of the total collection.

We will again assume a 1,000,000 document collection, and again assume sample sizes using 95% +/-2.5% confidence level and interval parameters. An initial sample of all documents taken at the beginning of the project to give us a rough sense of prevalence for search guidance purposes (not recall calculations), projected a range of relevant documents of from **5,500 to 16,100**.

The lawyers in this hypothetical legal search project plodded away for a couple of weeks and found and confirmed **9,000 **relevant documents, *True Positives* all. At this point they are finding it very difficult and time consuming to find more relevant documents. What they do find is just more of the same. They are sophisticated lawyers who read my blog and have a good grasp of the nuances of sampling. So they know better than to simply rely on a point projection of prevalence to calculate recall, especially one based on a relatively small sample of a million documents taken at the beginning of the project. *See* *In Legal Search Exact Recall Can Never Be Known. *They know that their recall level could be only a 56% recall 9,000/16,100 (or perhaps far less, in the event the one sample they took was a confidence level outlier event, or there was more concept drift than they thought).* *It could also be near perfect, 100% recall, when they consider the binomial interval range going the other way. The 9,000 documents they had found was way more than the low range of 5,500. But they did not really consider that too likely.

They decide to stop the search and take a second 1,534 document sample, but this time of the 991,000 null set (1,000,000 – 9,000). They want to follow the *ei-Recall* method, and they also want to test for any highly relevant or unique strong relevant documents by following the *accept on zero error* quality assurance test. **They find -1- relevant document in that sample.** It is just a *more of the same* type merely relevant document. They had seen many like it before. Finding a document like that meant that they passed the quality assurance test they had set up for themselves. It also meant that using the binomial intervals for 1/1534, which is from 0.00% and 0.36%, there is a projected range of *False Negatives* of from between **-0- and 3,568** documents (991,000*0.36%). (Actually, a binomial calculator that shows more decimal places than any I have found on the web (hopefully we can fix that soon) will not show zero percent, but some very small percentage less than one hundredth of a percent, and thus some documents, not -0- documents, and thus something slightly less than 100% recall.)

They then took out the* ei-Recall *formula and plugged in the values to see what recall range they ended up with. They were hoping it was tighter, and more reliable, than the **56% to 100%** recall level they calculated from the first sample alone based on prevalence.

Calculation for the low end of the recall range: **Rl = TP / (TP+FNh) = 9,000 / (9,000 + 3,568) = 71.61%. **

Calculation for the high end of the recall range: **Rh = TP / (TP+FNl) = 9,000 / (9,000 + 0) = 100%.**

The recall range using *ei-Recall* was **72% – 100%.**

The attorneys’ hopes in this extremely low prevalence hypothetical were met. The 72%-100% estimated recall range was much tighter than the original 56%-100%. It was also more reliable because it was based on a sample taken at the end of the project when relevance was well defined. Although this sample did not, of and by itself, prove that a reasonable legal effort had been made, it did strongly support that position. When considering all of the many other quality control efforts they could report, if challenged, they were comfortable with the results. Assuming that they did not miss a highly relevant document that later turns up in discovery, it is very unlikely they will ever have to redo, or even continue, this particular legal search and review project.

Would the result have been much different if they had doubled the sample size, and thus doubled the cost of this quality control effort? Let us do the math and find out, assuming that everything else was the same.

This time the sample is 3,068 documents from the 991,000 null set. They find two relevant documents, *False Negatives*, of a kind they had seen many times before. This created a binomial range of 0.01% to 0.24%, projecting a range of *False Negatives* from 99 to 2,378 (991,000 * 0.01% — 991,000 * 0.24%). That creates a recall range of 79% – 99%.

**Rl = TP / (TP+FNh) = 9,000 / (9,000 + 2,378) = 79.1%. **

**Rh = TP / (TP+FNl) = 9,000 / (9,000 + 99) = 98.91%.**

In this situation by doubling the sample size the attorneys were able to narrow the recall range from 72% – 100% to 79% – 99%. But was it worth the effort and doubling of cost? I do not think so, at least not in most cases. But perhaps in larger cases, it would be worth the expense to tighten the range somewhat and so increase somewhat the defensibility of your efforts. After all, we are assuming in this hypothetical that the same proportional results would turn up in a sample size double that of the original. The results could have been much worse, or much better. Either way, your results would be more reliable than an estimate based on a sample half that size, and would have produced a tighter range. Also, you may sometimes want to take a second sample of the same size, if you suspect the first was an outlier.

Let is consider one more example, this time of an even smaller prevalence and larger document collection. This is the hardest challenge of all, a near *Inverted Jenny* puzzler. Assume a document collection of 2,000,000 and a prevalence based on a first random sample for *search-help* purposes, where again only one relevant was found in the sample of 1,534 sample. This suggested there could be as many as 7,200 relevant documents (0.36% * 2,000,000). So in this second hypothetical we are talking about a dataset where the prevalence may be far less than one percent.

Assume next that only** 5,000** relevant documents were found, *True Positives*. A sample 1,534 of the remaining 1,995,000 documents found **-3-** relevant, *False Negatives*. The binomial intervals for 3/1534, is from 0.04% to 0.57%, producing a projected range of *False Negatives* of from between **798 and 11,372 **documents (1,995,000 * .04% — 1,995,000 * 0.57%). Under *ei-Recall* the recall range measured is **31% – 86%**.

**Rl = TP / (TP+FNh) = 5,000 / (5,000 + 11,372) = 30.54%. **

**Rh = TP / (TP+FNl) = 5,000 / (5,000 + 798) = 86.24%.**

31% – 86% is a big range. Most would think too big, but remember, it is just one quality assurance indicator among many.

The size of the range could be narrowed by a larger sample. (It is also possible to take two samples, and, with some adjustment, add them together as one sample. This is not mathematically perfect, but fairly close, if you adjust for any overlaps, which anyway would be unlikely.) Assume the same proportions where we sample 3,068 documents from 1,995,000 *Negatives*, and find **-6-** relevant, *False Negatives*. The binomial range is 0.07% – 0.43%. The projected number of *False Negatives* is 1,397 – 8,579 (1,995,000*.07% – 1,995,000*.43%). Under *ei-Recall* the range is **37% – 78%.**

**Rl = TP / (TP+FNh) = 5,000 / (5,000 + 8,579) = 36.82%. **

**Rh = TP / (TP+FNl) = 5,000 / (5,000 + 1,397) = 78.16%.**

The range has been narrowed, but is still very large. In situations like this, where there is a very large *Negatives* set, I would suggest taking a different approach. As discussed in Part One, you may want to consider a rational culling down of the *Negatives*. The idea is similar to that behind stratified sampling. You create a subset or strata of the entire collection of *Negatives* that has a higher, hopefully *much* higher prevalence of *False Negative*s than the entire set. *See eg*. William Webber, *Control samples in e-discovery* (2013) at pg. 3

Although Webber’s paper only uses keywords as an example of an easy way to create a *strata*, in reality in modern legal search today there are a number of methods that could be used to create the stratas, only one of which is keywords. I use a combination of many methods that varies in accordance with the data set and other factors. I call that a *multimodal* method. In most cases (but not all), this is not too hard to do, even if you are doing the stratification before active machine learning begins. The non-AI based culling methods that I use, typically before active machine learning begins, include parametric Boolean keywords, concept, key player, key time, similarity, file type, file size, domains, etc.

After the predictive coding begins and ranking matures, you can also use probable relevance ranking as a method of dividing documents into strata. It is actually the most powerful of the culling methods, especially when it comes to predicting irrelevant documents. The second filter level is performed at or near the end of a search and review project. (This is all shown in the two-filter diagram above, which I may explain in greater detail in a future blog.) The second AI based filter can be especially effective in limiting the *Negatives* size for the *ei-Recall* quality assurance test. The last example will show how this works in practice.

We will begin this example as before, assuming again 2,000,000 documents where the search finds only 5,000. But this time before we take a sample of the *Negatives* we divide them into two strata. Assume, as we did in the example we considered in Part One, that the predictive coding resulted in a well defined distribution of ranked documents. Assume that all 5,000 documents found were in the 50%, or higher, probable relevance ranking (shown in red in the diagram). Assume that all of the 1,995,000 presumed irrelevant documents are ranked 49.9%, or less, probable relevant (shown in blue in the diagram). Finally assume that 1,900,000 of these documents are ranked 10% or less probable relevant. Thus leaving 95,000 documents ranked between 10.1% and 49.9%.

Assume also that we have good reason to believe based on our experience with the software tool used, and the document collection itself, that all, or almost all, *False Negatives* are contained in the 95,000 group. We therefore limit our random sample of 1,534 documents to the 95,000 lower midsection of the *Negatives.* Finally, assume we now find **-30-** relevant, *False Negatives*, none of them important.

The binomial range is 0.80% – 2.01%, but this time the projected number of *False Negatives* is 1,254 – 2,641 (95,000*1.32% — 95,000*2.78%). Under *ei-Recall* the range is **72.37% – 80.06%**.

**Rl = TP / (TP+FNh) = 5,000 / (5,000 + 2,641) = 72.37%. **

**Rh = TP / (TP+FNl) = 5,000 / (5,000 + 1,245) = 80.06%.**

We see that culling down the *Negative* set of documents in a defensible manner can lead to a much tighter recall range. Assuming we did the culling correctly, the resulting recall range would also be more accurate. On the other hand, if the culling was wrong, based on incorrect presumptions, then the resulting recall range would be less accurate.

The fact is, no random sampling techniques can provide completely reliable results in very low prevalence data sets. There is *no free lunch*, but, at least with *ei-Recall* the bill for your lunch is honest because it includes ranges. Moreover, with intelligent culling to increase the probable prevalence of *False Negatives*, you are more likely to get a good meal.

**Conclusion**

There are five basic advantages of *ei-Recall* over other recall calculation techniques:

**Interval Range**values are calculated, not just a deceptive point value. As shown by*In Legal Search Exact Recall Can Never Be Known,***One Sample**only is used, not two, or more. This limits the uncertainties inherent in multiple random samples.**End of Project**is when the sample of the*Negatives*is taken for the calculation. At that time the relevance scope has been fully developed.**Confirmed Relevant**documents that have been verified as relevant by iterative reviews, machine and human, are used for the*True Positives*. This eliminates another variable in the calculation.**Simplicity**is maintained in the formula by reliance on basic fractions and common binomial confidence interval calculators. You do not need an expert to use it.

I suggest you try *ei-Recall*. It has been checked out by multiple information scientists and will no doubt be subject to more peer review here and elsewhere. Be cautious in evaluating any criticisms you may read of *ei-Recall* from persons with a vested monetary interest in the defense of a competitive formula, especially vendors, or *experts *hired by vendors. Their views may be colored by their monetary interests. I have no skin in the game. I offer no products that include this method. My only goal is to provide a better method to validate large legal search projects, and so, in some small way, to improve the quality of our system of justice. The law has given me much over the years. This method, and my other writings, are my personal payback.

I offer *ei-Recall* to anyone and everyone, no strings attached, no payments required. Vendors, you are encouraged to include it in your future product offerings. I do not want royalties, nor even insist on credit (although you can do so if you wish, assuming you do not make it seem like I endorse your product). *ei-Recall* is all part of the public domain now. I have no product to sell here, nor do I want one. Although I do hope to create an online calculator soon for *ei-Recall. *When I do, that too will be a *give away*.

My time and services as a lawyer to implement *ei-Recall are* not required. Simplicity is one of its strengths, although it helps if you are part of the *eLeet*. I think I have fully explained how it works in this lengthy article. Still, if you have any *non-legal* technical questions about its application, send me an email, and I will try to help you out. *Gratis* of course. Just realize that I cannot by law provide you with any legal advice. All articles in my blog, including this one, are purely for educational services, and are not legal advice, nor in any way a solicitation for legal services. Show this article to your own lawyer or e-discovery vendor. You do not have to be *1337* to figure it out (although it helps).

Pingback: For Better Document Review, You Need to Approach a ZEN State: eDiscovery Best Practices | eDiscoveryDaily

Pingback: Predictive Coding 3.0 | e-Discovery Team ®

Pingback: Concept Drift and Consistency: Two Keys To Document Review Quality – Part Three | e-Discovery Team ®

Pingback: Document Review and Predictive Coding: Video Talks – Part Six | e-Discovery Team ®

Pingback: Document Review and Predictive Coding: an introductory course with 7 videos and 2,982 words | e-Discovery Team ®

Pingback: Five Tips to Avoid Costly Mistakes in Electronic Document Review – Part 3 | e-Discovery Team ®

Pingback: Five Tips To Avoid Mistakes In Electronic Document Review | e-Discovery Team ®